scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd. scribd.
The Plutonium Breeder
Thomas B. Cochran
Natural Resources Defense Council. Inc.
1350 New York Avenue, N.W.; Suite 300Washington, D.C. 20005, U.S.A.Telephone: 202-763-7800FAX: 202-783-5917Telex:
4900010562
NRD UI
Summary
Development efforts worldwide have demonstrated that the Plutonium Fast Breeder isuneconomical and will remain so in the foreseeable future. The energy security benefits of theplutonium breeder can be achieved more cheaply and more quickly by stockpiling uranium.Deployment of plutonium fast breeders would entail staggering amounts of nuclear weapons-usable plutonium in the reactors and the supporting fuel cycle. There is no adequate means of safeguarding this material to prevent some of it from being used for nuclear weapons ..The continued development of plutonium breeders in Japan will legitimize breeder programs andlarge plutonium stockpiles in non-nuclear weapons states. In the future these plutoniumstockpiles could be converted quickly for use in nuclear weapons. The existence of largestockpiles of plutonium In Japan will also make it difficult for the United States and the Union of Sovereign States (formerly the Soviet Union) to agree to deep reductions in their respectivestockpiles of nuclear weapons and their stockpiles of plutonium for weapons. A breeder is a nuclear reactor capable of creating fissile material faster than it is consumed. As power reactors, breeders once held out the promise of an essentially inexhaustible supply of low-cost energy.Thus, in 1945 Enrico Fermi predicted, lI[t]he country which first develops a breeder reactor will have agreat competitive advantage in atomic energy.·1 Fermi turned out to be wrong. He failed to appreciatewhat we now know: breeders simply cost too much - they are uneconomical. Fermi also failed to foreseethe enormous risks that a breeder economy would pose for society. In this paper we will examine someof these risks. But first, for the benefit of those unfamiliar with breeder technOlOgy, we review some of thetechnical aspects that distinguish breeders from the more familiar light water reactors (LWRs) in wide usetoday. This is followed by a review of the status of worldwide efforts to develop the Uquid Metal FastBreeder Reactor (LMFBR), the breeder technology of choice. After reviewing the risks associated with theLMFBR and its fuel cycle, we touch upon two of the arguments currently offered to justify further investment In breeder technology: that it provides greater energy security and improves wastemanagement.
1
As cited in U.S. Atomic Energy Commission, "Cost-Benefit Analysis of the U.S. Breeder Reactor Program,· WASH·1126, April
1969.
![]()
As we review these issues we should not forget that the primary purpose of nuclear power reactors is togenerate electricity. The additional purpose of the plutonium breeder is to create plutonium, an alternativeto uranium fuel. Plutonium fuel is important only if its use in reactors is economical, or as a hedge againstinsecure supplies of uranium fuel. Despite the complexity and higher capital cost of the technology whichis employed, the plutonium breeder simply represents a sophisticated method of heating water withnuclear weapons material.Many heavy atomic nuclei are capable of being fissioned; but only a fraction of these are fissile, that is,fissionable by slow (or zero energy) neutrons, as well as fast (highly energetic) neutrons. Only one fissilenuclide, uranium-235 (U-235), is found in nature in sufficient abundance to use as a nuclear fuel. It occurswith an isotopic abundance of 0.72 percent. The rest of natural uranium, except for traces of U-234, isnonfissile U-238. Most reactors today are fueled with uranium - usually after it has been enriched toincrease the concentration of U-235. The electric power reactors in Japan today are uranium fueled. Theyare called Ught Water Reactors (LWRs) because they are cooled with ordinary water. The water alsoserves to moderate, or slow down, the neutrons, thereby improving the probability of fissloning the U-235.If nuclear reactors were to be operated in large numbers for many years, U-235 would eventually becomescarce, and the cost of uranium fuel could substantially increase. It is possible to manufacture alternativefissile Isotopes from abundant nonfissile material by a process called conversion. The two most importantfissile isotopes produced by conversion are U-233 and plutonlum-239 (Pu-239). U-233 is.produced fromthorium-232, and Pu-239 from U-238, by neutron absorption.
2
Nuclear reactors can be very efficientconverters because they can be designed to provide a copious supply of extra neutrons.On average, fissioning atoms in reactoi'.fuel each eject somewhat more than two neutrons, one of whichis needed to sustain the chain reaction. Those neutrons not entering into fission reactions either leak fromthe reactor core or are captured in the fuel or by surrounding materials, including control rods. Typicallyin power reactors only a small fraction are lost or are captured in structural materials. Therefore onaverage close to one, and sometimes more than one, of the neutrons are captured in fertile materials,such as U-238. Uranium-fueled reactors (unless enriched to 100 percent U-235
3)
automatically producePU-239, since the fuel contains both U-235 and U-238. Before the spent fuel is removed from the reactor,some of the neWly created Pu-239 atoms fission, just like the U-235, and some capture neutrons without
2
When U-238 captures a neutron not sufficiently energetic to cause fission. It transforms spontaneously to neptunlum-239, whichin tum transforms to Pu-239 In a relatively short time span.
3
Some reactors are fueled with uranium enriched close to this theoretical Umlt. U.S. naval reactors, for example, use uranium
enriched to 97.3% U-235.
![]()
fissioning. This latter process creates PU-240, a heavier isotope of plutonium which is not fissile. Evenheavier isotopes of plutonium are similarly created, e.g., Pu-241, which Is fissile, from neutron capture byPu-240, and Pu-242, which is not fissile, from neutron capture by Pu-241. At very low fuel burnup levelsthe fractional amounts of secondary plutonium Isotopes are very small.
4
For a Pressurized Water Reactor (PWR) at a fuel burnup level of 20,000 megawatt-days per metric ton (Mwd/MT), the fraction of Pu-24O isabout 17 percent of the total plutonium, with the fraction of Pu-241 being approximately 11.5 percent, andthat of PU-242 about 4 percent (Figure 1). At higher burnups these fractional amounts Increase so that ata burnup of about 40,000 Mwd/MT, the isotopic ratios are about:
5
(Pu-239: Pu-240:Pu-241:PU-242)
=
(0.55:0.21 :0.15:0.7).Plutonium with a Pu-240 content less then 7% is called weapon-grade plutonium; 7 to less than 19% Pu-240 is called fuel-grade; and plutonium with a Pu-240 content of 19% or greater is called reactor-gradeplutonium. A typical commercial-size LWRwill consume about 1000 kilograms (kg) of fissionable material per year.
s
The conversion ratio, defined as the ratio of fissile atoms produced to fissile atoms consumed, Is about0.5 to 0.7 for an LWR fueled with low enriched uranium (3% - 5% U-235).7Assuming a conversion ratio of 0.6, then (0.6 x 239/235
=)
0.61 g of Pu-239 are produced for every g of U-235 consumed, or alternatively, (0.61 x 1.05 x 1.169
=)
0.75 9 of Pu-239 are produced per Mwd.
8
Most of the Pu-239 iseither fissioned, or converted to heavier Isotopes, in situ.
.• Fuel bumup Is a measure of the amount of fuel consumed and Is a function of the reactor design, the power level and the lengthof time the fuel remains In the reactor. Bumup can
b e
expressed as a percentage of the fuel consumed. Since the energyproduced
by
the reactor is a function of the amount of fuel consumed, It Is also common to express the bumup In terms of themegawatt-days of energy produced per metric ton of uranium In the reador (Mwd/MT).
II
See also, J. carson Mark,
Reactor-Grade Plutonium's Explosive Properties,
Nuclear Control Institute, August 1990.
8
Here, we assume the reactor capacity Is 3000 Megawatt -thermal (MwJ (1000 Megawatt-electrlc (Mwe>with a thermal8l'ficlency of
33.3%),
and Its capacity factor Is 0.75. (A capacity factor of 0.75 means the energy output Of the reactor during a given period isthe same as It would be If the reactor operated at 100% power for 75% of the time.) During one year It will produce (3000 x 365.25.x 0.75
=)
822,000 Mw-days (Mwd) of thermal energy. One Mwd Is produced
by
the fission of 1.05 grams (g) of U-235, or 1.068 gof Pu-239. About 95% of the energy produced In an LWR comes from fission of U-235 and Pu-239, and the remaining 5%
by
fastneutron fission of U-238. Thus, 822,000 Mwd can be produced
by
flsslonlng·820-834 kg of U-235 and Pu-239, and 44 kg of U-238.In about 14.5% of the cases where U-235 captures a neutron, It does so without flssioning, resulting In the production of U-236.Consequently, 1.169 9 of U-235 are consumed for every 9 flssioned.
7
The conversion ratio varies with fuel enrichment and other reactor design parameters. For a reactor fueled with natural uraniumthe conversion factor is 0.894; see John·R, Lamarsh,
Introduction
to
Nuclear Engineering,
(Reading, MA: Addison-WesleyPublishing Company, 1975), p. 110.
8
One megawatt-day (Mwd) Is produced per 1.05 9 U-235 fIssIoned, and 1.169 9 U-235 are consumed per 9 U-235 fIssIoned; Ibid,
p.75.
![]()
70
~
0
• •
• •
0
e
60
.
c
.2
=
• • •
0
a-
e
SO
0
Co)
0
Q.
0
-
0
40
III
~
Q.
30
I
,
II
,
,
I
I
,
,
:
,
III
,
,
I
,
,
I
I
,
,
,
,
,
,
,
,
I
,
!
,
I
,
I
,
I
,,
I
,
!
II
,
I
,,
,
I
, ,
,
I
,
I
,
I
.
I
..
,.
,
,,
,
II
,
I
.'
I I
.
,
,
,
I
,
,
,
I
oo
10 15 20 25 30
Fuel Exposure, Mwd/mtU
: I t
10-3
![]() |